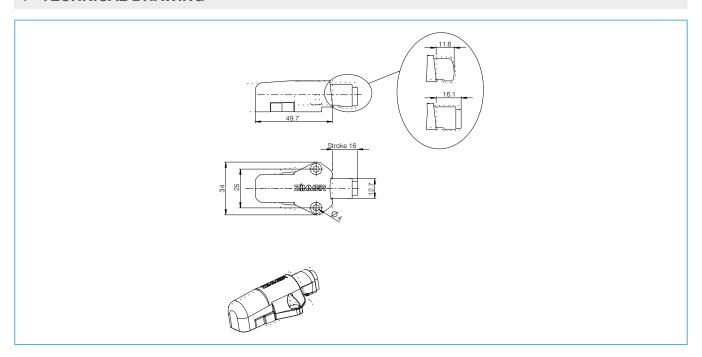

FLUID DAMPERS SERIES VOLPINO

▶ PRODUCT SPECIFICATIONS

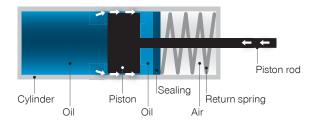
The power pack for hinge damping. Users particularly appreciate the easy handling of the customizable damping force, which can be adjusted to the door weight after assembly.


APPLICATION AREAS

SERIES CHARACTERISTICS

	Stroke	Medium	Operating direction
Series	[mm]		
Volpino	15.0	Fluid	Pressure dampers

► TECHNICAL DRAWING

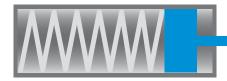

► TECHNICAL DATA

Order no.	B015-10-009
Technology	Defined Comfort
Damper characteristic curve	Linear-increasing
Damper force [N]	40
Damper tolerance [N]	+15/-15
Damper speed [mm/s]	50
Free-run	No
Free-run length [mm]	0.0
Damper spring return	Yes
Damper housing color	Gray RAL7035
Damper cover color	Gray RAL7035
Damper Ø housing [mm]	
Damper housing length [mm]	49.7
Damper Ø piston rod [mm]	
Damper housing connection	
Damper piston rod connection	
Application environment	Standard

INDIVIDUAL DAMPERS FLUID DAMPERS

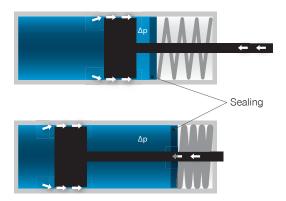
PRINCIPLE OF FUNCTION

- ▶ In a closed housing a piston is moving back- and forward. A food-safe silicon-oil can flow in both directions through small channels. The viscosity of the oil, as well as the modification of the cross-section of the channels, leads to the friction needed to reduce the speed. The friction-heat will be channeled outside through the cylinder-wall.
- ► Highest energy-consumption on smallest cross section
- ► Different damping-characteristics possible

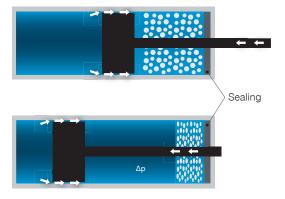


DAMPER WITH AND WHITOUT RESET-FUNCTION

Damper **without** reset-function needs a coupler onto the pistonrod is needed to be used within the fitting. The pistonrod do not extract by itself, it has to be extracted manually.



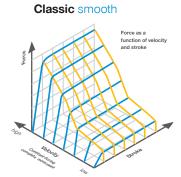
Damper **with** a integrated reset-function a Coupler is not needed onto the pistonrod within the fitting. The pistonrod will be extracted automatically.


VOLUME-COMPENSATION

Volume-compensation by means of a spring in an air-filled chamber (ZIMMER-principle)

Δp = Pressure in cylinder higher than surrounding-pressure

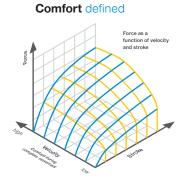
Volume-adjustment by using a sponge (competitors)

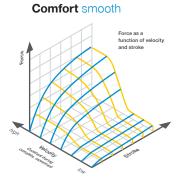

	Function	Leak-proof	Life-endurance
Cellular rubber	X	_	-
Volume-compensation	X	X	X

TYPES

The nozzle let the oil flow constantly:

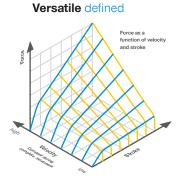
- Highest force on smallest space available
- Force can be modified through the crosssection of the nozzle
- No overload-protection

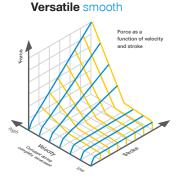




Oil is flowing around the piston. The housing is expanding at high pressure whereas through this gap the oil is flowing.

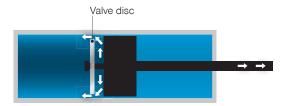
- Overload-protection
- Different graphs possible





Through these two nozzles the oil can flow constantly. Channels in the housing enhances special cross-sections. Within this example the cross-section becomes smaller during retraction; thus the damping force becomes stronger.

- Various damper-characteristics possible
- ► Force can be modified by varying the cross-section and by changing the number of the channels


defined: speed independent

smooth: depending on speed, smooth reaction at low velocities, less opening time, constant closing picture, small opening force

INDIVIDUAL DAMPERS FLUID DAMPERS

OPENING-MOVEMENT

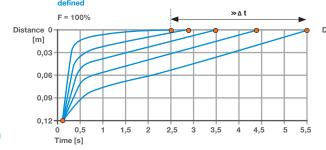
Piston defined

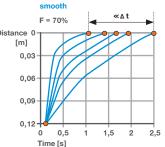
Damper pulled out (release)

Damping

Piston smooth

Damper pulled out (release)

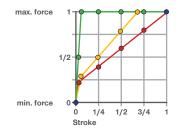

Damping

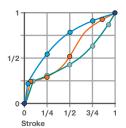


Valve disc as well as drillings lead to a minimalized resistance at opening and the damping force needed during closing-movement.

COMPARSATION DEFINED/SMOOTH IN SELF-CLOSING UNIT

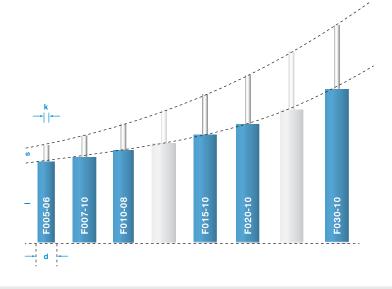
- ► EXAMPLE CHARACTERIS-TIC CHIUSO 100
- Load: 70kg sliding door
- Chart shows the closing time from 0,1-0,5 m/s in different graphs
- Opening force is reduced about 30% in version: smooth

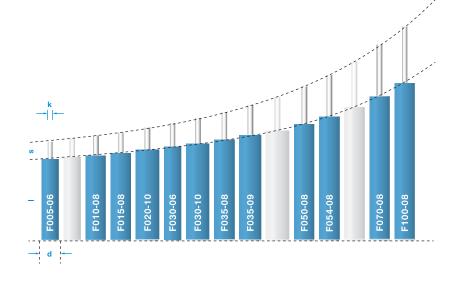



FLUID DAMPER CHARACTERISTIC WITH CONSTANT SPEED

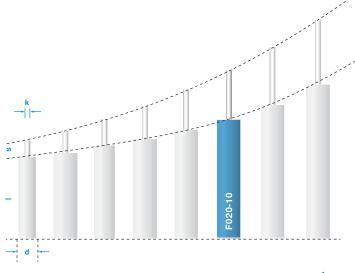
Characteristic curves fluid damper

Damping force according to the stroke


- Linear rising
- Linear rising constant
- Linear constant
- Inclining
- S-Line
- Declining


PRODUCT RANGE DAMPER CLASSIC

- Housing length (I): 42 mm bis 67 mm
- Housing diameter (d): 6 mm,8 mm und 10 mm
- Stroke (s): 5 mm bis 30 mm
- Piston rod diameter (k): 2,3 mm


PRODUCT RANGE DAMPER COMFORT

- ► Housing length (I): 29,5 mm bis 151,6 mm
- Housing diameter (d): 6 mm,8 mm und 10 mm
- Stroke (s): 10 mm bis 100 mm
- Piston rod diameter (k): 1,5 bis 2,3 mm

PRODUCT RANGE DAMPER VERSATILE

- Housing length (I): 42 mm bis67 mm
- Housing diameter (d): 6 mm,8 mm und 10 mm
- Stroke (s): 5 mm bis 30 mm
- Piston rod diameter (k): 2,3 mm

