FLUID DAMPERS SERIES BULLITOLINO

PRODUCT SPECIFICATIONS

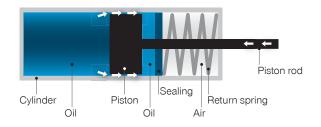
The Bullitolino hydraulic damper series closes the gap between furniture and industrial applications. These stainless steel fluid dampers feature outstanding force and a longer service life with the highest quality standards.


APPLICATION AREAS

SERIES CHARACTERISTICS

	Stroke	Medium	Operating direction
Series	[mm]		
Bullitolino	14.0	Fluid	Pressure dampers

TECHNICAL DRAWING


► TECHNICAL DATA

Order no.	F014-10-201	
Technology	Defined Comfort	
Damper characteristic curve	Linear-constant	
Damper force [N]	135	
Damper tolerance [N]	+15/-15	
Damper speed [mm/s]	1	
Free-run	No	
Free-run length [mm]	0.0	
Damper spring return	Yes	
Damper housing color	Uncoated steel	
Damper cover color	Black RAL9005	
Damper Ø housing [mm]	10.0	
Damper housing length [mm]	49.0	
Damper Ø piston rod [mm]	3.0	
Damper housing connection	Without connection	
Damper piston rod connection	No head	
Application environment	Standard	

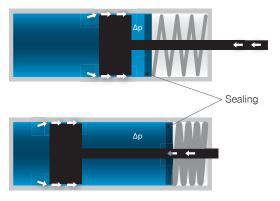
INDIVIDUAL DAMPERS FLUID DAMPERS

PRINCIPLE OF FUNCTION

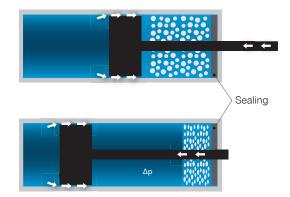
- In a closed housing a piston is moving back- and forward. A food-safe silicon-oil can flow in both directions through small channels. The viscosity of the oil, as well as the modification of the cross-section of the channels, leads to the friction needed to reduce the speed. The friction-heat will be channeled outside through the cylinder-wall.
- Highest energy-consumption on smallest cross section
- Different damping-characteristics possible

DAMPER WITH AND WHITOUT RESET-FUNCTION

Damper **without** reset-function needs a coupler onto the pistonrod is needed to be used within the fitting. The pistonrod do not extract by itself, it has to be extracted manually.



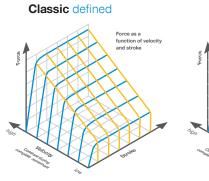
Damper **with** a integrated reset-function a Coupler is not needed onto the pistonrod within the fitting. The pistonrod will be extracted automatically.


VOLUME-COMPENSATION

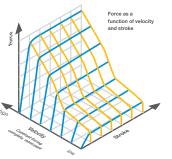
Volume-compensation by means of a spring in an air-filled chamber (ZIMMER-principle)

Δp = Pressure in cylinder higher than surrounding-pressure

Volume-adjustment by using a sponge (competitors)

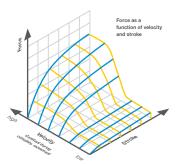


	Function	Leak-proof	Life-endurance
Cellular rubber	X	_	-
Volume-compensation	x	X	X


TYPES

The nozzle let the oil flow constantly:

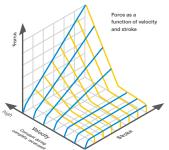
- Highest force on smallest space available
- Force can be modified through the crosssection of the nozzle
- No overload-protection



Oil is flowing around the piston. The housing is expanding at high pressure whereas through this gap the oil is flowing.

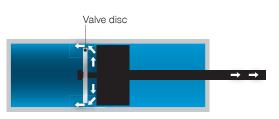
- Overload-protection
- Different graphs possible

Comfort smooth



Through these two nozzles the oil can flow constantly. Channels in the housing enhances special cross-sections. Within this example the cross-section becomes smaller during retraction; thus the damping force becomes stronger.

- Various damper-characteristics possible
- Force can be modified by varying the cross-section and by changing the number of the channels


defined: speed independent

smooth: depending on speed, smooth reaction at low velocities, less opening time, constant closing picture, small opening force

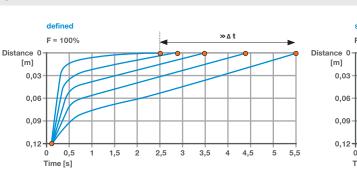
INDIVIDUAL DAMPERS FLUID DAMPERS

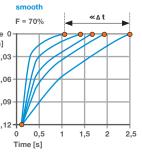
OPENING-MOVEMENT

Damper pulled out (release)

Damping

Piston smooth Damper pulled out (release)

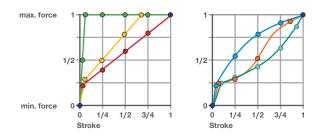

Damping



Valve disc as well as drillings lead to a minimalized resistance at opening and the damping force needed during closing-movement.

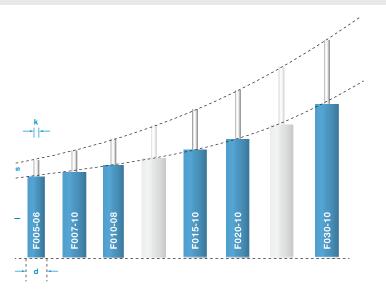
COMPARSATION DEFINED/SMOOTH IN SELF-CLOSING UNIT

- ► EXAMPLE CHARACTERIS-TIC CHIUSO 100
- Load: 70kg sliding door
- Chart shows the closing time from 0,1–0,5 m/s in different graphs
- Opening force is reduced about 30% in version: smooth

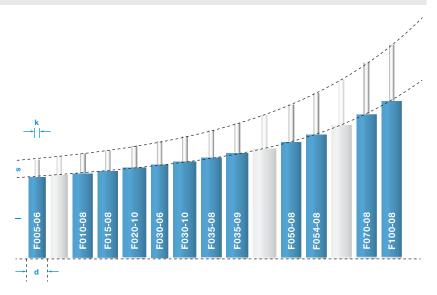


FLUID DAMPER CHARACTERISTIC WITH CONSTANT SPEED

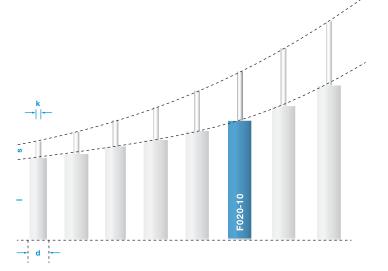
Characteristic curves fluid damper


Damping force according to the stroke

- Linear rising
- Linear rising constant
- Linear constant
- Inclining
- S-Line
- Declining


PRODUCT RANGE DAMPER CLASSIC

- Housing length (I): 42 mm bis
 67 mm
- Housing diameter (d): 6 mm,
 8 mm und 10 mm
- Stroke (s): 5 mm bis 30 mm
- Piston rod diameter (k): 2,3 mm


PRODUCT RANGE DAMPER COMFORT

- Housing length (I): 29,5 mm bis 151,6 mm
- Housing diameter (d): 6 mm, 8 mm und 10 mm
- Stroke (s): 10 mm bis 100 mm
- Piston rod diameter (k): 1,5 bis 2,3 mm

PRODUCT RANGE DAMPER VERSATILE

- Housing length (I): 42 mm bis
 67 mm
- Housing diameter (d): 6 mm,
 8 mm und 10 mm
- Stroke (s): 5 mm bis 30 mm
- Piston rod diameter (k): 2,3 mm

